Security Evaluations Beyond Computing Power: How to Analyze Side-Channel Attacks you Cannot Mount?

نویسندگان

  • Nicolas Veyrat-Charvillon
  • Benoît Gérard
  • François-Xavier Standaert
چکیده

Present key sizes for symmetric cryptography are usually required to be at least 80-bit long for short-term protection, and 128-bit long for long-term protection. However, current tools for security evaluations against side-channel attacks do not provide a precise estimation of the remaining key strength after some leakage has been observed, e.g. in terms of number of candidates to test. This leads to an uncomfortable situation, where the security of an implementation can be anywhere between enumerable values (i.e. 2 − 2 key candidates to test) and the full key size (i.e. 2−2 key candidates to test). In this paper, we mitigate this important issue, and describe a key rank estimation algorithm that provides tight bounds for the security level of leaking cryptographic devices. As a result and for the first time, we are able to analyze the full complexity of “standard” (i.e. divide-and-conquer) side-channel attacks, in terms of their tradeoff between time, data and memory complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tighter, faster, simpler side-channel security evaluations beyond computing power

A Eurocrypt 2013 paper “Security evaluations beyond computing power: How to analyze side-channel attacks you cannot mount?” by Veyrat-Charvillon, Gérard, and Standaert proposed a “Rank Estimation Algorithm” (REA) to estimate the difficulty of finding a secret key given side-channel information from independent subkeys, such as the 16 key bytes in AES-128 or the 32 key bytes in AES-256. The lowe...

متن کامل

Side channel parameter characteristics of code injection attacks

Embedded systems are suggestive targets for code injection attacks in the recent years. Software protection mechanisms, and in general computers, are not usually applicable in embedded systems since they have limited resources like memory and process power. In this paper we investigate side channel characteristics of embedded systems and their applicability in code injection attack detection. T...

متن کامل

Security analysis of higher-order Boolean masking schemes for block ciphers (with conditions of perfect masking)

Side-channel attacks are an important class of cryptanalytic techniques against cryptographic implementations and masking is a frequently considered solution to improve the resistance of a cryptographic implementation against side-channel attacks. In this paper, we consequently analyze the security of higher-order Boolean masking schemes in various contexts. Our results are twofold. First, we f...

متن کامل

A new CPA resistant software implementation for symmetric ciphers with smoothed power consumption: SIMON case study

In this paper we propose a new method for applying hiding countermeasure against CPA attacks. This method is for software implementation, based on smoothing power consumption of the device. This method is evaluated on the SIMON scheme as a case study; however, it is not relying on any specific SIMON features. Our new method includes only AND equivalent and XOR equivalent operations since every ...

متن کامل

Scheduler-based Defenses against Cross-VM Side-channels

Public infrastructure-as-a-service clouds, such as Amazon EC2 and Microsoft Azure allow arbitrary clients to run virtual machines (VMs) on shared physical infrastructure. This practice of multi-tenancy brings economies of scale, but also introduces the threat of malicious VMs abusing the scheduling of shared resources. Recent works have shown how to mount crossVM side-channel attacks to steal c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012